

Outline
Project Jupyter

What you can do with Jupyter?

Jupyter/IPython basics

Introduction to markdown, magic, widgets

Introduction to ALCF JupyterHub

Live Demos

New kernel installation

ezCobalt: how to submit jobs

ezBalsam: how to use Balsam

Disclaimer
This webinar will not cover:

low level details about queuing or ensembling jobs or creating Balsam

workflows, etc. covered in a

using Jupyter through an ssh tunnel, reverse proxy, or remote kernels

using Dask, Spark, Kubernetes, or a container for distributed computing

accessing compute nodes directly

ALCF JupyterHub is a new service and improving rapidly. You can send an email to

support@alcf.anl.gov (cc: keceli@anl.gov) for problems and suggestions.

previous webinar

https://alcf.anl.gov/events/best-practices-queueing-and-running-jobs-theta

Project Jupyter
Started in 2014, as an IPython spin-off project led by Fernando Perez to “develop

open-source software, open-standards, and services for interactive computing”.

Inspired by Galileo̓s notebooks and languages used in scientific software: Julia,

Python, and R.

Jupyter X

What you can do?
Interactive development environment

Fast code prototyping, test new ideas easily

Most languages are supported through

Learn or teach with notebooks

Prepare tutorials, run demos

Data analysis and visualization

Presentations with Reveal.js

Interactive work on HPC centers or cloud

JupyterHub

Jupyter kernels

Google Colab

Binder

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://colab.research.google.com/
https://mybinder.org/

Basics (Shortcuts)
Esc/Enter get in command/edit mode

Command mode Edit mode

h show (edit) all shortcuts shift enter Run cell, select below

a/b insert cell above/below cmd/ctrl enter Run cell

c/x copy/cut selected cell tab completion or indent

V/v paste cell above/below shift tab tooltip

d,d delete cell cmd/ctrl d delete line

y/m/r code/markdown/raw mode cmd/ctrl a select all

f search, replace cmd/ctrl z undo

p open the command palette cmd/ctrl / comment

Basics (Shortcuts)
Esc/Enter get in command/edit mode

Command mode Edit mode

h show (edit) all shortcuts shift enter Run cell, select below

a/b insert cell above/below cmd/ctrl enter Run cell

c/x copy/cut selected cell tab completion or indent

V/v paste cell above/below shift tab tooltip

d,d delete cell cmd/ctrl d delete line

y/m/r code/markdown/raw mode cmd/ctrl a select all

f search, replace cmd/ctrl z undo

p open the command palette cmd/ctrl / comment

In [6]: import os
os.getenv??
#help('modules')
#help('modules mpi4py')

Markdown
bullet list

subbullet

equation:

inline code echo hello jupyter `

A

Table

Col 1 Col 2 Col 3

1, 1 1,2 1,3

2, 1 2,2 2,3

3, 1 3,2 3,3

A kitten

E = mc
2

link

https://alcf.anl.gov/events/towards-interactive-high-performance-computing-alcf-jupyterhub

IPython Magic
Magic functions are prefixed by % (line magic) or %% (cell magic)

Cell magic %% should be at the first line

Shell commands are prefixed by !
%quickref : Quick reference card for IPython
%magic : Info on IPython magic functions
%debug : Interactive debugger
%timeit : Report time execution
%prun : Profile (%lprun is better, pip install lprun and %load_ext
line_profiler)

In [7]: %magic

In [7]: %magic

In [60]: import numpy as np
a = [1]*1000
%timeit sum(a)
b = np.array(a)
%timeit np.sum(a)
%timeit np.sum(b)

10000 loops, best of 5: 7.51 µs per loop
The slowest run took 145.08 times longer than the fastest. This could mean
that an intermediate result is being cached.
10000 loops, best of 5: 106 µs per loop
The slowest run took 5.23 times longer than the fastest. This could mean t
hat an intermediate result is being cached.
100000 loops, best of 5: 7.14 µs per loop

Jupyter Widgets (ipywidgets)
Widgets are basic GUI elements that can enhance interactivity on a Jupyter notebook

Enables using sliders, text boxes, buttons, and more that can link input and output.

Jupyter Widgets (ipywidgets)
Widgets are basic GUI elements that can enhance interactivity on a Jupyter notebook

Enables using sliders, text boxes, buttons, and more that can link input and output.

In [1]: import ipywidgets
ipywidgets.IntSlider()

Jupyter Widgets (ipywidgets)
Widgets are basic GUI elements that can enhance interactivity on a Jupyter notebook

Enables using sliders, text boxes, buttons, and more that can link input and output.

In [1]: import ipywidgets
ipywidgets.IntSlider()

In [2]: ipywidgets.Text(value='Hello Jupyter!', disabled=False)

Jupyter Widgets (ipywidgets)
Widgets are basic GUI elements that can enhance interactivity on a Jupyter notebook

Enables using sliders, text boxes, buttons, and more that can link input and output.

In [1]: import ipywidgets
ipywidgets.IntSlider()

In [2]: ipywidgets.Text(value='Hello Jupyter!', disabled=False)

In [3]: ipywidgets.ToggleButton(value=False, description="Don't click",
 button_style='danger', tooltip='Description',)

ALCF JupyterHub
If you are an ALCF user, you can log in to Jupyter Hub at

using your ALCF credentials.

If not, check

Jupyter Hub instances runs on an external servers, but not on login, mom, or compute

nodes.

Servers have 16 core Intel(R) Xeon(R) CPU E5-2683 and 512 GB memory and reserved

for data analytics and visualization, not simulations.

https://jupyter.alcf.anl.gov

https://alcf.anl.gov/support-center/get-started

https://jupyter.alcf.anl.gov/
https://alcf.anl.gov/support-center/get-started

ALCF JupyterHub
JupyterHub for Cooley :

runs on jupyter01.mcp.alcf.anl.gov

has access to the user's home folder /home/$USER , the Mira projects folder
/projects , and the Theta project folder /lus/theta-fs0/projects
submitted jobs will run on Cooley

JupyterHub for Theta:

runs on jupyter02.mcp.alcf.anl.gov

has access to your home folder /home/$USER and projects folder

/lus/theta-fs0/projects *
does not have access to /opt/cray , /opt/intel , etc., that is, you
cannot use any Theta modules or any Cray libraries.

Submitted jobs will run on Theta

Notes
JupyterHub starts on your home folder, to access project folders, you can create a

symbolic link !ln -s /project/my_project my_project
If you have a broken symlink on your home directory, JupyterHub gives a server error

with permission denied message. You need to clean up / fix the broken

symbolink links.

When you exceed your file quota, you may also experience problems. Check with

myquota .
To run JupyterLab on JupyterHub, modify the link to

https://jupyter.alcf.anl.gov/cooley/user/$USER/lab
Documentation is available at https://www.alcf.anl.gov/support-center/theta/jupyter-

hub

https://www.alcf.anl.gov/support-center/theta/jupyter-hub

How to install a new Conda environment &
Jupyter kernel
Step 0

Check the names of the existing environments & kernels:

Select a name for the new environment & kernel.

Using a prefix such as jhub_ is helpful to distinguish JupyterHub environments from
others.

!conda env list
!jupyter kernelspec list

ENVNAME="jhub_demo"

Step 1
Create a new environment

Or, create a new environment with a different python version

Or, create a new environment with a clone of the base environment (recommended)

!conda create -y --name $ENVNAME

!conda create -y --name $ENVNAME python=3.8

!conda create -y --name $ENVNAME --clone base

A step backward
If you want change the env name, you may need to remove the environment

!conda env remove -y --name $ENVNAME

Step 2
Install new packages with conda , or pip

Or, if you didn't clone from the base, you need to install the following packages

additionally:

!source activate $ENVNAME; conda install -y -c conda-forge rise

!source activate $ENVNAME; pip install balsam-flow

!source activate $ENVNAME; conda install -y jupyter nb_conda
ipykernel

Step 3
Install the kernel for Jupyter

!source activate $ENVNAME;python -m ipykernel install --user --name
$ENVNAME

Final steps
Refresh the browser or open a new notebook.

Select the new Kernel from the top dropdownlist

When you need to install another package, you only need to run the following steps

ENVNAME='jhub_demo'
!source activate $ENVNAME; conda install -y <any_conda_package>
!source activate $ENVNAME; pip install -c <any_pypi_package>

Notes
Check the installation with

Do not use environments installed on JupyterHub elsewhere.

!conda list
import <any_package>
print(<any_package>.__file__)
print(<any_package>.__version__)

Clean up
You may run out of space quickly, check with myquota .
You can run conda clean to remove index cache, lock files, tarballs, unused cache

packages, and source cache

To remove an environment and the kernel you don't need:

!conda clean --all -y

!conda env remove -y -n $ENVNAME
!jupyter kernelspec uninstall -y $ENVNAME

Resources

jupyter.org

Check out Voilà, Jupyter Lab, Jupyter Book

Fernando Perez s̓ Project Jupyter presentation

Jupyter tutorial

Version control for Jupyter

ALCF ML tutorials

More ALCF notebooks

https://files.speakerdeck.com/presentations/5cd35ca0e91b01319d42227239d9f24b/jupyter-announce-scipy-2014.pdf
https://coderefinery.github.io/jupyter/
https://nbdime.readthedocs.io/en/latest/
https://github.com/argonne-lcf/ATPESC_MachineLearning
https://github.com/jupyter4hpc/ALCF_notebooks

Acknowledgements
Thank you all for attending

Thanks to Misha, Alvaro, and Ray for their feedback and suggestions

Thanks to Tommie for running and maintaining JupyterHub servers

Thanks to Gurunath for working together during the summer

Thanks to Venkat, Tom, and Mike for motivation and support

Live Demo
All materials are at https://github.com/keceli/ezHPC

git clone https://github.com/keceli/ezHPC

https://github.com/keceli/ezHPC

